If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X-23000=0
a = 1; b = 5; c = -23000;
Δ = b2-4ac
Δ = 52-4·1·(-23000)
Δ = 92025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92025}=\sqrt{225*409}=\sqrt{225}*\sqrt{409}=15\sqrt{409}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15\sqrt{409}}{2*1}=\frac{-5-15\sqrt{409}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15\sqrt{409}}{2*1}=\frac{-5+15\sqrt{409}}{2} $
| 15/x+4=27 | | 11x-9=17-2x | | Y=5x+4x+1 | | 120=a+95 | | n+42=224 | | 3600/b^2+b^2=100 | | 4x+(6/2x-3)-7=0 | | a=4a+8 | | 40=m+5 | | 3.8/95=x/97 | | (3x+36)=(5x-8) | | 28x-3x2=0 | | 10x=-4x-5-7 | | 4w+16=108 | | 1/3x3/4=5/8 | | 5x=x12 | | -7e+10=25 | | (4/x)+(5)=(7) | | 0.1-x=45 | | 0.25x^2+1.25x+1=0 | | 2(3x+9)=8x | | x+20+2x+100=180 | | 7x+13+8x+6=180 | | 1*x=1.6 | | 4^x=115 | | 6+b/23=0 | | 3x+2=-77 | | 3/4=n+1/2 | | 20-7x=-43 | | a+1/270=180 | | p+1/216=180 | | c+(104)=90 |